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Stochastic phase resetting of two coupled phase oscillators stimulated at different times

Peter A. Tass
Institute of Medicine, Research Center Ju¨lich, 52425 Ju¨lich, Germany

and Department of Stereotaxic and Functional Neurosurgery, University Hospital, 50924 Cologne, Germany
~Received 21 January 2003; published 6 May 2003!

A model of two coupled phase oscillators is presented, where the oscillators are subject to random forces and
are stimulated at different times. Transient phase dynamics, synchronization, and desynchronization, which are
stimulus locked~i.e., tightly time locked to a repetitively administered stimulus!, are investigated. Complex
coordinated responses, in terms of a noise-induced switching across trials between qualitatively different
responses, may occur when the two oscillators are reset close to an unstable fixed point of their relative phases.
This can be achieved with an appropriately chosen delay between the two stimuli. The switching of the
responses shows up as a coordinated cross-trial~CT! response clustering of the oscillators, where the two
oscillators produce two different pairs of responses. By varying noise amplitude and coupling strength we
observe a stochastic resonance and a coupling-mediated resonance of the CT response clustering, respectively.
The presented data analysis method makes it possible to detect such processes in numerical and experimental
signals. Its time resolution is enormous, since it is only restricted by the time resolution of the preprocessing
necessary for extracting the phases from experimental data. In contrast, standard data analysis tools applied
across trials relative to stimulus onset, such as CT averaging~where an ensemble of poststimulus responses is
simply averaged!, CT standard deviation, and CT cross correlation, fail in detecting complex coordinated
responses and lead to severe misinterpretations and artifacts. The consequences for the analysis of evoked
responses in medicine and neuroscience are significant and are discussed in detail.

DOI: 10.1103/PhysRevE.67.051902 PACS number~s!: 87.19.La, 05.45.Xt, 05.40.Ca
io
n
s
s

pe
o

io
io
a

rg
d
t

ke
d

t

in
to
ha
er
th

n

ste-

ed
n in
om
dy

illa-
nses

ized
ali-
or

e of

-

e

al
h
e

ely
set-

al
we
ri-
w,
to

u-
m-
stic
I. INTRODUCTION

Synchronization abounds in physics@1#, chemistry @2#,
biology @3#, neuroscience@4#, and medicine@5,6#. In the past
years, numerous studies addressed the stochastic phase
chronization of periodic oscillators@2,1# and chaotic oscilla-
tors @7# in physics@1,8#, chemistry@9#, and biology@10,11#.
Various dynamical properties of stationary synchronizat
processes have been revealed, such as stochastic reso
of phase synchronization@12#. The majority of these studie
were dedicated to stationary synchronization proces
evolving on a long time scale, for timet→`. In this context
stochastic phase synchronization was defined as the ap
ance of one or more prominent peaks in the distribution
the phase difference during a sufficiently long observat
@7,13#. Put otherwise, the hallmark of phase synchronizat
is the tendency of the oscillators to maintain a stable ph
relationship.

On the other hand, in physics and biology there is a la
number of important dynamical processes that are cause
pulsatile stimuli. Such processes are transient and ac
short time scales. In particular, they violate at→` as well as
a quasistationarity assumption. To cope with stimulus-loc
transient dynamics of this kind, we use an approach base
stochastic phase resetting@5,16,17#: Stimulus-locked phase
dynamics or stimulus-locked synchronization means tha
particular transient dynamics of the phases or of then:m
phase difference is stimulus locked, i.e., tightly locked
time to a repetitively delivered stimulus. More precisely, s
chastic stimulus-locking of the phase dynamics and stoc
tic stimulus-lockedn:m phase synchronization are charact
ized by the presence of one or more prominent peaks in
distribution of the phases and of then:m phase difference
across trials at each timet relative to stimulus onset in a
1063-651X/2003/67~5!/051902~15!/$20.00 67 0519
syn-

n
ance

es

ar-
f
n
n
se

e
by
on

d
on

a

-
s-
-
e

ensemble of responses. The relevant criterion here is a
reotypical time course of the phases or then:m phase differ-
ence relative to stimulus onset across trials.

We apply this approach to study transient stimulus-lock
phase dynamics, synchronization, and desynchronizatio
two coupled phase oscillators, which are subject to rand
forces and stimulated at different times. In a previous stu
on two coupled and simultaneously stimulated phase osc
tors it has been shown that complex coordinated respo
occur, provided the stimuli are appropriately chosen@16,17#.
For example, an antiphase reset of in-phase synchron
oscillators causes a noise-induced switching between qu
tatively different responses relative to stimulus onset. F
this, however, the two phase-dependent stimuli have to b
a particular form. If the stimulus of oscillator 1~added to the
right-hand side of the evolution equation of the phase! reads,
e.g.,S1(c1)5I cosc1, the stimulation mechanism of oscilla
tor 2 has to take the complementary formS2(c2)5cos(c2
1p), where the phase shift ofp in the argument causes th
antiphase reset~see below!.

If both oscillators model identical units, such as identic
oscillatory neurons, it might be difficult to realize suc
complementary stimuli experimentally. In this paper, w
show that the noise-induced switching between qualitativ
different responses may emerge in a much more general
ting. We may stimulate identical oscillators with identic
stimuli and produce such complex responses, provided
stimulate the oscillators at different times with an approp
ately chosen delay. From an experimental point of vie
varying the delay between two stimuli is trivial compared
modifying the stimulation mechanism.

We shall see that stimulation at different times and stim
lation with antiphase stimuli have several features in co
mon. For example, in both cases we observe a stocha
©2003 The American Physical Society02-1
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resonance that causes the noise-induced switching betw
different responses across trials. On the other hand, onl
the case of stimulation at different times strong enough c
pling may prevent the oscillators from such complex
sponses. In this case, we even observe a pronou
coupling-mediated resonance of the noise-induced switch

The study of stimulus-induced transient responses of
cillators by itself is an interesting topic. Furthermore, it h
several significant applications in various fields of phys
and natural sciences. The investigation of transient sh
term brain responses evoked by sensory stimuli is a key
proach for the study of cerebral information processing a
diagnosis@6#. For this purpose, we may apply three stand
data analysis methods across trials.

~i! A stimulus-locked response of a neuronal population
typically analyzed with a cross-trial~CT! averaging, where
an ensemble of poststimulus responses is averaged a
trials relative to stimulus onset@14,15#. The interactions of
the oscillators are typically guessed by phenomenologic
studying such CT averaged responses, e.g., by compa
changes of peak latencies or amplitudes under varying c
ditions.

~ii ! To determine how stereotypical the responses are
may calculate a standard deviation across trials relative
stimulus onset.

~iii ! To detect linear correlations in an ensemble of pa
of responses, we may use a CT cross correlation, i.e., a c
correlation calculated across all trials at each timet relative
to stimulus onset.

Instead of these CT standard analysis techniques, we u
stochastic phase resetting analysis@5,16,17#. For this, we de-
termine the time-dependent distributions of the phases an
the n:m phase difference calculated across trials for e
time t relative to stimulus onset, and evaluate these distri
tions statistically. In this way it is possible to detect t
noise-induced switching between different responses ac
trials. In contrast, the CT standard techniques—CT ave
ing, CT standard deviation, and CT cross correlation—le
to misinterpretations and even artifacts. Our results have
vere consequences, since the CT standard methods are
for the analysis of evoked responses in neuroscience
medicine. The gold standard for the extraction of stimul
locked responses, the CT averaging, is even a major too
diagnosis@6#. We shall discuss in detail how we can avo
artifacts originating from CT averaging by applying the pr
posed data analysis techniques.

II. STOCHASTIC MODEL

We consider a model given by two phase oscillators w
phasesc1 , c2 and constant amplitudes governed by

ċ j5v j2K sin~c j2ck!1Xj~ t !Sj~c j !1F j~ t !, ~1!

where j ,k51,2 and j Þk. The eigenfrequencies readv1,2
5v6g/2 with detuning g. The stimuli are modeled by
2p-periodic, time-independent functionsSj (c j )5Sj (c j
12p). In several fields of the natural sciences, and typica
in biology, the effect of a stimulus is phase dependent@3#. A
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pair of stimuli is administered as illustrated in Fig. 1: Osc
lator 1 is stimulated first, while the onset of the stimulus
oscillator 2 is delayed bytdel>0. We assume that the dura
tion of both stimuli is the same. Accordingly,tdel is also the
delay between the offsets of the two stimuli. An extension
stimuli of different duration is straightforward and is di
cussed in Sec. X. Switching on and off the stimulus of os
lator j is modeled by

Xj~ t !5H 1: stimulus is on at timet

0: stimulus is off at timet,
~2!

where j 51,2 andX1(t)5X2(t1tdel). The random forcesF1
and F2 are the Gaussian white noise fulfillinĝF j (t)&50
and^F j (t) Fk( t̃ )&5Dd jkd(t2 t̃ ) with constant noise ampli-
tudeD. Equation~1! may serve as a minimal model for tw
electrically stimulated neurons@5# or as a minimal model for
two neuronal populations affected by sensory stimuli as
plained below. We set the amplitude of both oscillators eq
to 1 and define the signal of thej th phase oscillator as

xj~ t !5cosc j~ t !. ~3!

III. CROSS-TRIAL ANALYSIS BASED ON STOCHASTIC
PHASE RESETTING

We introducenormalized phases

f j~ t !5
c j~ t !

2p
mod 1~ j 51,2! ~4!

and thenormalized cyclic n:m phase difference

wn,m~ t !5
nc1~ t !2mc2~ t !

2p
mod 1. ~5!

The goal of our analysis is to detect whether in an ensem
of responses to the stimulus there are epochs during w
phasesf1 , f2 and/or the phase differencewn,m display a
stereotypical, tightly stimulus-locked time course. For this
random timest1 ,t2 , . . . ,t l we deliver a series ofl identical
pairs of stimuli shown in Fig. 1. In particular, in each pair

FIG. 1. Time course ofXj from Eq. ~2! during stimulation.
Oscillator 1 is stimulated first at timetk50 ~a!, while the onset of
the stimulus of oscillator 2 is delayed bytdel ~b!. Both stimuli are of
equal duration. Therefore,tdel is also the delay between the offse
of the two stimuli. This pair of stimuli is administered at rando
timest1 ,t2 , . . . ,t l .
2-2
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stimuli the time delaytdel between the onsets of the first an
second stimulus is kept constant throughout the whole se
The length of the interstimulus intervals is randomized
cording to

tk112tk5twin1zk , ~6!

wheretwin is constant and large compared to the stimulat
duration as well as the time scale of the transient dynam
zk is uniformly distributed in@0,2p/v#. To each stimulus we
attach an identical time window@ ta ,tb# (ta,0, tb.0, Fig.
2!. Each window has a time axist8, so that t8P@ ta ,tb#,
where the onset of the stimulus in each window lies int8
50. The window lengthtb2ta is smaller than the length o
the interstimulus intervals (tb2ta,twin), but is large com-
pared to the time scale of the transient dynamics.

For the sake of simplicity let us drop the prime int8, and
keep in mind that from now on,t denotes the time axis of th
window. To study the dynamics of the ensemble of stimul
locked responses for each timetP@ ta ,tb#, we introduce the
time-dependentcross-trial (CT) distributionsof the normal-
ized phases from Eq.~4! and the cyclicn:m phase difference
from Eq. ~5! by

$f j~ t1tk!%k51, . . . ,l , $wn,m~ t1tk!%k51, . . . ,l . ~7!

The time course off j andwn,m is perfectly stimulus locked
at time t if the corresponding CT distributions from Eq.~7!
are Dirac-like distributions, i.e.,f j (t1t i)5f j (t1tk) and
wn,m(t1t i)5wn,m(t1tk) for all i ,k51, . . . ,l . On the other
hand, iff j andwn,m are not at all stimulus locked at timet,
these distributions are uniform. The extent of stimulus lo
ing of f j andwn,m is quantified for each timet by means of
the time-dependentstimulus-locking indicesl j

(n)(t) of f j

given by

l j
(n)~ t !5U1l (

k51

l

exp@ in2pf j~tk1t !#U, ~8!

and then:m stimulus locking indicessn,m
(n) (t) of wn,m given

by

sn,m
(n) ~ t !5U1l (

k51

l

exp@ in2pwn,m~tk1t !#U, ~9!

where uyu denotes the modulus ofy, and n is an integer
@16,17#. l j

(n)(t) and sn,m
(n) (t) detect whetherf j ’s or wn,m’s

CT distribution from Eq.~7! at time t hasn peaks that are
equally spaced in@0,1# ~modulo 1! and fulfill 0<l j

(n)(t)
<1, 0<sn,m

(n) (t)<1 for tP@ ta ,tb# and for all integern.
Let us consider the three leading indices (n51,2,3) in

four different situations.
~i! If the distribution$f j (t1tk)%k51, . . . ,l at time t is uni-

form, thenl j
(n)(t)50 for n51,2,3.

~ii ! One pronounced peak of the distribution$f j (t
1tk)%k51, . . . ,l at time t corresponds to largel j

(n)(t) for n
51,2,3. ~iii ! Two pronounced antiphase peaks of the dis
bution $f j (t1tk)%k51, . . . ,l at time t are characterized by
large l j

(2)(t) and smalll j
(n)(t) for n51,3. Two symmetric
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antiphase peaks of the distribution$f j (t1tk)%k51, . . . ,l at
time t are specifically detected with the time-dependentan-
tiphase CT clustering index of the jth oscillator defined by

a j~ t !5l j
(2)~ t !2l j

(1)~ t ! ~10!

@17#. 21<a j (t)<1 is fulfilled for all timest, where the two
Dirac-like symmetric antiphase peaks are related toa j (t)
51. a j detects symmetric CT antiphase response cluste
which is stimulus locked in time~see, Ref.@17#!. Analo-
gously, we introduce theantiphase clustering index of the n:
m phase difference by putting

dn,m~ t !5sn,m
(2) ~ t !2sn,m

(1) ~ t !, ~11!

FIG. 2. The scheme illustrates the cross-trial analysis, whe
series ofl identical pairs of stimuli from Fig. 1 is administered a
random timest1 ,t2 , . . . ,t l . Each pair consists of a stimulus ad
ministered to oscillator 1~with onsettk) followed by a stimulus
administered to oscillator 2 after a constant delaytdel ~with onset
tk1tdel), where tdel here equals half a period of the oscillatio
Onsets and offsets of the stimuli of oscillator 1 are indicated
solid vertical lines, whereas onsets and offsets of the stimul
oscillator 2 are denoted by dashed vertical lines, respectively.
identical time window@ ta ,tb# ~with ta,0, tb.0) is attached to
each stimulus and indicated by a shaded region at the top of
panel. The signalsx1(t)5cos@2pf1(t)# and x2(t)5cos@2pf2(t)#
from Eq.~3! are shown in~a! and~b!. The corresponding phasesf1

and f2 from Eq. ~4! are displayed in~c! and ~d!. The normalized
cyclic 1:1 phase differencew1,1 from Eq. ~5! is shown in~e!. Note,
w1,150 and w1,151 are identical, so that continuous variation
aroundw1,150 appear as abrupt jumps between 0 and 1. The tra
shown are obtained by numerical integration of model equation~1!
with parameters as in Fig. 4. In this paper, the model given by
~1! is numerically solved with Euler’s technique and a time step
0.001. To pick up transients completely, in all simulations presen
below both mean interstimulus duration and window lengthtb2ta

are'2.5 times larger than that shown here.
2-3
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wheredn,m(t) detects two symmetric antiphase peaks of
distribution$wn,m(t1tk)%k51, . . . ,l .

~iv! Three equally spaced peaks of the distribution$f j (t
1tk)%k51, . . . ,l at timet correspond to largel j

(3)(t) and small
l j

(n)(t) for n51,2.
l j

(n) andsn,m
(n) are the modulus of thenth Fourier mode of

the CT distributions from Eq.~7! ~see, Ref.@5#!. Similar to
Eq. ~8!, Zn(t)5 l 21(k51

l exp@injk(t)# is used to detectn
equally spaced phase-locked clusters in a population ofl os-
cillators with phasesj1 , . . . ,j l @5,18,25#.

In addition to the indices defined by Eqs.~8!–~11!, we use
indices based on the Shannon entropy in order to quan
the deviation of the distributions$f j (t1tk)%k51, . . . ,l and
$wn,m(t1tk)%k51, . . . ,l from a uniform one. Accordingly, the
time-dependent entropy basedstimulus-locking indexm j (t)
of f j reads

m j~ t !5
Smax2Sj~ t !

Smax
, ~12!

whereSj (t)52( i 51
N pi ln pi is the entropy of the distribution

$f j (t1tk)%k51, . . . ,l at time t, and pi denotes the relative
frequency of findingf j (t1tk) within the i th bin. Smax
5 ln N is the entropy of a uniform distribution, whereN
5exp@0.62610.4 ln(l21)# is the optimal number of bins
and l is the number of stimuli administered@19#. 0<m j (t)
<1 holds for allt, wherem j (t)50 corresponds to a uniform
distribution ~no stimulus locking! at time t, whereasm j (t)
51 corresponds to a Dirac-like distribution~perfect stimulus
locking! at time t.

Analogously, the time-dependent entropy basedn:m
stimulus-locking indexrn,m(t) of wn,m is given by

rn,m~ t !5
Smax2Sn,m~ t !

Smax
, ~13!

where Sn,m(t) is the entropy of the distribution$wn,m(t
1tk)%k51, . . . ,l at time t. The entropy based index forwn,m
from Eq. ~13! has been introduced in Ref.@5#, whereas the
entropy based index forf j from Eq.~12! is introduced here.

We use the first and the 99th percentile of the prestimu
distributions of the locking indices$l j

(n)(t)% tP[ ta,0[ ,

$sn,m
(n) (t)% tP[ ta,0[ , $m j (t)% tP[ ta,0[ , and $rn,m(t)% tP[ ta,0[ as

confidence levels in order to determine whether a stimu
causes a significant increase or decrease of the correspo
locking index. For example, an increase or a decrease o
stimulus locking off j at time t is considered significant
providedl j

(1)(t) is greater than the 99th or smaller than t
first percentile of$l j

(1)(t)% tP[ ta,0[ , respectively. Significan
stimulus-locked in-phase synchronization or desynchron
tion at time t occurs, providedsn,m

(1) (t) exceeds the 99th o
falls below the first percentile of$sn,m

(1) (t)% tP[ ta,0[ . The dif-
ferences between the listed indices will be explained bel
In this paper, we restrict ourselves to the simplest case w
n5m51. The stimulus-locked dynamics of then:m phase
difference~with n and/or m Þ1) has to be taken into ac
count, e.g., if the oscillators interact via ann:m coupling
consisting of terms such as sin(ncj2mck).
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IV. MOTION IN A DOUBLE-WELL POTENTIAL

Let us consider the dynamics of model equation~1! with-
out noise by settingXj from Eq.~2! equal to zero. With Eqs
~5! and~1! we immediately obtain the evolution equation
the phase differencew1,1 as

ẇ1,15
m

2p
2

K

p
sin~2pw1,1!1F~ t !, ~14!

which we cast into the form

ẇ1,15G~w1,1!1F~ t !. ~15!

The random forcesF(t)5F1(t)2F2(t) are the Gaussian
white noise fulfilling ^F(t)&50 and ^F(t) F( t̃ )&5Dd(t
2 t̃ )/p with constant noise amplitudeD/p. G(w1,1) is a
short form for the deterministic terms of the right-hand si
of Eq. ~14!.

First, we focus on the behavior occurring without nois
i.e., for D50. In this case, the dynamics is governed by
potential

V~w1,1!52E
c

w1,1
G~j!dj, ~16!

with constantc, where

ẇ1,152
dV~w1,1!

dw1,1
. ~17!

A suitable choice ofc yields

V~w1,1!52
g

2p
w1,12

K

2p2
cos~2pw1,1!. ~18!

The dynamics of Eq.~14! corresponds to an overdampe
motion of a particle in the potentialV(w1,1) ~Fig. 3!. w1,1
moves in such a way thatV(w1,1) is minimized, andw1,1
stops only whendV/dw1,1 vanishes~see Ref.@1# and Chap. 9
in Ref. @24#!. The maximum of the potential is an unstab
fixed point. We denote the value ofw1,1 at whichV is maxi-
mal by w1,1

max. For w1,15w1,1
max a minimal perturbation is suf-

ficient to makew1,1 move either to the right or to the lef
minimum of V. The particle relaxes into the right or le
minimum depending on whetherw1,1 is greater or less than
w1,1

max, respectively.
Studying the poststimulus dynamics ofw1,1, thus, means

considering an initial condition problem of Eq.~14!: The
stimulus putsw1,1 on a particular value, which isw1,1’s initial
value of the poststimulus period. Starting at that initial valu
w1,1 relaxes towards a stable state. By placingw1,1 to the
right or to the left ofw1,1

max, the stimulus completely deter
mines whetherw1,1 moves to the right or to the left mini
mum.

When noise is added, i.e., forD.0, the situation
changes. We are no longer able to predict the trajectory
the particle. Rather we can only describe its dynamics i
probabilistic sense. For example, by means of a Fokk
Planck equation we can determine the time course of
2-4
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STOCHASTIC PHASE RESETTING OF TWO COUPLED . . . PHYSICAL REVIEW E67, 051902 ~2003!
probability densityp(w1,1,t), wherep(w1,1,t)dw1,1 gives us
the probability of findingw1,1 in the interval @w1,1,w1,1
1dw1,1# ~see Ref.@1# and Chap. 9 in Ref.@24#!. The impact
of noise after stimulation is obvious: The overdamped m
tion of the particle is perturbed by random forces and
haves in a way that has been studied in detail in the con
of diffusion in a double-well potential~see, Chap. 9 in Ref
@24#!. The dynamics fort→` is no longer totally determined
by the initial state, which means that the division into thr
different scenarios~i.e., staying at the unstable maximum
moving into the right or left minimum! is no longer valid.
For sufficiently large noise amplitude the particle may e
up in the right well although it started left fromw1,1

max and
vice versa.

V. TRANSIENT RESPONSE CLUSTERING,
SYNCHRONIZATION, AND DESYNCHRONIZATION

We can place the particle on top of the potentialV by
simultaneously delivering two stimuli with

S1~c1!5I cosc1 , S2~c2!5I cos~c21p!, ~19!

where both stimuli have identical onsets and offsets (tdel
50 in Fig. 1!. For I large enough compared to the couplin
strengthK, the first stimulus resetsf1 to fstat, whereas the
second stimulus resetsf2 to fstat1p @16,17#. In general,
such an antiphase reset can be achieved with stimuli of
order, i.e., stimuli containing only terms with cos(c) and
sin(c), only provided the phase difference of the argume
of the two stimuli is sufficiently close top, such asS1(c1
1u)5I cos(c11u) and S2(c2)5I cos(c21u1p) with con-
stantu @16,17#.

The question now is, whether we can compensate a p
shift of p in the arguments ofS1 and S2 by a delaytdel
corresponding to half a period of the oscillators. Put oth
wise: Can an antiphase reset be achieved with two stimu
first order

S1~c1!5I cosc1 , S2~c2!5I cos~c2! ~20!

FIG. 3. PotentialV from Eq. ~18! is plotted for two different
values of the detuningg: g50 ~thick line!, g50.5 ~thin line!.
Local maxima ofV are indicated by dots, respectively.
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administered with a delay of half a mean period of the os
lators: tdel5T/25p/v in Fig. 1?

We assume the coupling to be strong enough compare
the noise amplitudeD, so that without stimulation the two
oscillators spontaneously synchronize in phase@Figs. 4~g!
and 4~h!#. The stimulation intensityI is assumed to be larg
compared to the coupling strengthK and to the noise ampli-
tude D (K!I , D!I ). The two stimuli may have differen
intensity parameters, what matters is that the intensity
rameters are large with respect toK andD. This guarantees
that the two strong stimuli quickly reset the oscillator
When the first stimulus is over,f1 has been shifted close t
fstat'0.36 @Fig. 4~a!#. Likewise, after the offset of the sec
ond stimulusf2 has also been reset tofstat'0.36@Fig. 4~e!#.
tdel5T/2 is the delay between the offsets of the two stimu
Therefore, after the offset of the first stimulus, oscillator
runs through half a period until stimulation of oscillator 2
over, too. Consequently, at the end of the stimulation, in to
an antiphase reset is achieved, i.e.,w1,1 is set to 0.5@Fig.
4~g!#.

The reset of the oscillators’ phases is reflected by an
crease of the locking indexl j

(1) @Fig. 4~b!#. Due to this reset
the oscillators undergo a transition from an in-phase synch
nization to a particularly strong antiphase synchronizat
via a transient desynchronization in between@Figs. 4~g! and
4~h!#. After the stimulation, both oscillators relax back to th
same in-phase synchronization as before stimulation. Du
this relaxation they pass through a desynchronization
lasts longer than the desynchronization during stimulat
since K!I . In the course of the desynchronization durin
and after stimulation the trajectories ofw1,1 form two
‘‘branches’’ that converge to and diverge fromw1,150.5
@Fig. 4~g!#. The two branches occur for the following reaso
When the particle~meaningw1,1) is placed on top of the
maximum of the potentialV from Fig. 3, it moves down to
either the left or the right minimum. Note, in the simulatio
shown in Fig. 4 we have nonvanishing noise. The antiph
position of the two branches of the trajectories ofw1,1 coin-
cides with a local maximum ofs1,1

(2) from Eq. ~9! @Fig. 4~i!#,
a local minimum ofs1,1

(1) @Fig. 4~h!#, and, thus, a local maxi-
mum of d1,1 from Eq. ~11! @Fig. 4~j!#.

After the stimulation the trajectories of bothf1 and f2
form two antiphase clusters across trials, respectively. T
shows up in the locking indices from Eqs.~8! and ~10!:
While l j

(1) relaxes to zero,l j
(2) reincreases@Figs. 4~b! and

4~c!#. Accordingly, alsoa j reincreases and even exceeds
99th prestimulus percentile@Figs. 4~d! and 4~f!#. This indi-
cates that the distribution$f j (t11tk)%k51, . . . ,l has two an-
tiphase peaks@Figs. 4~a! and 4~e!#. With further increase in
time the clustering off j ’s trajectories vanishes due to th
noise.

The intimate relationship between the branching ofw1,1
and the antiphase CT response clustering off j has been
studied in detail for an antiphase reset achieved with sim
taneously delivered stimuli with phase shift ofp as defined
by Eq. ~19! @16,17#: In those trials whenw1,1 runs through
the upper or the lower branch,f j predominantly belongs to
either one of its clusters, respectively. This relationship ho
2-5
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FIG. 4. Strong stimuliS1(c1)5I cosc1 and S2(c2)5I cosc2 from Eq. ~1! administered with a delay of half a mean period of t
oscillators (tdel5T/25p/v) cause an antiphase reset. CT distributions from Eq.~7! are shown as time-dependent histograms off j andw1,1

calculated across trials for each timet relative to stimulus onset within the time window@ ta ,tb#, $f1(t1tk)%k51, . . . ,l in ~a!, $f2(t
1tk)%k51, . . . ,l in ~e!, $w1,1(t1tk)%k51, . . . ,l in ~g! ~0 is black and maximal values are white!. Horizontal arrows indicate antiphase peaks
$f1(t1tk)%k51, . . . ,l at t52 in ~a!. u and l indicate upper and lower branch of trajectories in~g!. Locking indices from Eqs.~8!–~11!: l1

(1)

in ~b!, l1
(2) in ~c!, a1 in ~d!, a2 in ~f!, s1,1

(1) in ~h!, s1,1
(2) in ~i!, andd1,1 in ~j!. l2

(1) andl2
(2) are very similar tol1

(1) andl1
(2) , respectively. As

in Fig. 2, onset~at t50) and offset of the stimulus of oscillator 1 are indicated by solid vertical lines, whereas onset and offset
stimulus of oscillator 2 are denoted by dashed vertical lines. Prestimulus interval,t,0, poststimulus interval,t.0. Significance levels,
dotted lines in~b! and~c! denote the 99th percentile of the prestimulus distributions$l1

(n)(t)% tP[ 25,0[ . In ~d!, ~f!, and~h!–~j! upper and lower
dotted lines indicate the 99th and the first percentile of the corresponding prestimulus distribution in the interval@25,0@ . Note, only a part
of the time window@ ta ,tb#5@25,5.5# is displayed for the sake of clarity. Parameters of Eq.~1!: K51.5, v56p, g50.04, D50.5, I
530, twin511 @see, Eq.~6!#, stimulus duration50.3, number of stimulil 5200. Results are stable with respect to variations ofl between
50 and 2000 and more.
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also in the case of an antiphase reset achieved with sti
administered at different times. In our case this means tha
those trials whenw1,1 runs through the upper branch@de-
noted byu in Fig. 4~g!#, the correspondingf1 is in the upper
peak of its CT distribution@marked by the upper arrow in
Fig. 4~a!#. By the same token, in those trials withw1,1 run-
ning through the lower branch@ l in Fig. 4~g!#, f1 is con-
tained in the lower peak of its CT distribution@lower arrow
in Fig. 4~a!#. We shall come back to this point below.

VI. IMPACT OF THE DELAY BETWEEN
THE TWO STIMULI

To demonstrate the impact of the type of reset on
poststimulus dynamics we vary the delaytdel between the
two stimuli ~see Fig. 1!, while the stimuliS1 andS2 are kept
fixed and are given by Eq.~20!. tdel is varied between 0 and
3T, whereT52p/v is the mean period of the oscillator
For tdel close to 0.5T, 1.5T, and 2.5T, an antiphase reset i
achieved, which leads to a CT response clustering with
typical signature described in the preceding section:l j

(1)

from Eq. ~8! quickly relaxes to zero@Figs. 5~b! and 5~h!#,
whereasl j

(2) reincreases@Fig. 5~e!#, so that also the an
tiphase CT clustering indexa j of both oscillators from Eq.
~10! reincreases and displays a distinct transient lasting o
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more than 20 cycles@Figs. 5~c! and 5~i!#. The corresponding
antiphase branching ofw1,1’s trajectories shows up as loca
minimum of s1,1

(1) from Eq. ~9! @Fig. 5~f!#, combined with a
local maximum of the antiphase clustering indexd1,1 of the
n:m phase difference from Eq.~11! @Fig. 5~k!#.

In contrast, when no antiphase reset is performed,
when tdel is not close to 0.5T, 1.5T, and 2.5T, the CT re-
sponse clustering does not occur. In this case, bothl j

(1) and
l j

(2) from Eq. ~8! relax to zero@Figs. 5~b!, 5~e!, and 5~h!#,
without any reincrease ofl j

(2) @Fig. 5~e!#. Sincel j
(1) relaxes

more slowly compared tol j
(2) , the antiphase clustering in

dexa j from Eq.~10! undergoes a negative transient before
finally tends to zero. A uniform distribution is connecte
with a j50.

Also for greater delays, such astdel close to 3.5T, 4.5T,
5.5T etc., the CT response clustering occurs. Though l
pronounced, the CT response clustering can even be
served for values of the delay up totdel59.5T ~not shown, in
order to avoid a packed figure!.

Figure 5 demonstrates the differences between the
sorts of locking indices, one being designed for detect
specific features, like one peak or two antiphase peaks, o
CT distributions@Eqs.~8!–~11!#, the other being based on th
Shannon entropy@Eqs. ~12! and ~13!#. Remarkably, the Sh-
2-6
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FIG. 5. ~Color! The delaytdel between the stimuliS1(c1)5I cosc1 andS2(c2)5I cosc2 from Fig. 4 is varied between 0 and 3T, where
T52p/v is the mean period of the oscillators~compare Fig. 1!. Except fortdel , all other parameters are as in Fig. 4. Onset~at t50) and
offset~indicated by vertical green line! of oscillator 1 are kept fixed, whereas onset~left sloping blue line! and offset~right sloping blue line!

of oscillator 2 are shifted according totdel . CT averaged signals from Eq.~21! and locking indices from Eqs.~8!–~13!, x̄1 in ~a!, l1
(1) in ~b!,

a1 in ~c!, m1 in ~d!, l1
(2) in ~e!, s1,1

(1) in ~f!, x̄2 in ~g!, l2
(1) in ~h!, a2 in ~i!, m2 in ~j!, d1,1 in ~k!, andr1,1 in ~l!. l2

(2) is very similar tol1
(2) .
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annon based indicesm j @Figs. 5~d! and 5~j!# from Eq. ~12!
behave very similar tol j

(1) @Figs. 5~b! and 5~h!# from Eq.
~8!. In particular,m j does not detect antiphase peaks of
CT distribution $f j (t1tk)%k51, . . . ,l in a sufficient way:
There is no re-increase ofm j as observed forl j

(2) @Figs. 5~d!
and 5~e!#. Consequently,m j does not capture the antipha
response clustering. Likewise, the Shannon entropy ba
index r1,1 @Fig. 5~l!# from Eq. ~13! does not detect the an
tiphase branching ofw1,1’s trajectories. In contrast, the latte
does not escape detection when the indicess1,1

(1) and d1,1

@Figs. 5~f! and 5~k!# Eqs.~9! and ~11! are used.
In summary, indicesm j andr1,1, which are based on th

Shannon entropy, are not sensitive enough to pick up
antiphase CT response clustering and the CT antiph
branching ofw1,1.

VII. COMPARISON WITH THE STANDARD
CROSS-TRIAL ANALYSIS

In this section we apply univariate and bivariate stand
cross-trial analysis techniques to the simulations shown
Figs. 4 and 5.

A. Cross-trial averaging

The gold standard in neuroscience and medicine for
tracting stimulus-locked responses of an oscillator is CT
eraging relative to stimulus onset@14,15#. To compute a CT
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average of signalxj from Eq. ~3! of the j th phase oscillator,
we use the stimulus onsettk as trigger. With this, thecross-
trial averaged signalof the j th oscillator reads

x̄ j~ t !5
1

l (
k51

l

xj~tk1t !. ~21!

The assumption behind the triggered averaging is that a
sponsexj can be decomposed into a stereotypical evok
responseej , which follows the stimulus with a constant de
lay, and additive Gaussian noisej j , so that

xj~tk1t !5ej~ t !1j j~tk1t ! ~22!

holds@14,15#. In such a case averaging improves the sign
to-noise ratio byAl , where the number of responsesl typi-
cally equals 20–300, andx̄ j (t)→ej (t) for l→` @14,15#.

Obviously, the assumption from Eq.~22! is violated by
the stochastic model given by Eq.~1!, because the oscillator
perform an ongoing oscillation, the stimulation effect d
pends on the phase of the oscillator, and the model’s nois
not simply added to the signalxj , but is inherent in the
dynamics. Anyhow, the simple model defined by Eq.~1!
shares basic features with stimulated brain activity.

~i! Ongoing oscillations abound in the brain@20#.
~ii ! Evoked responses result from reorganizing part

these ongoing oscillations, especially by resetting their ph
dynamics@21,22#. For example, auditory stimuli cause a
2-7
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evoked electroencephalography~EEG! response mainly by
changing the phases~but not the amplitudes! of the Fourier
spectrum of the spontaneous, pre-stimulus neuronal osc
tory activity @21#.

~iii ! Noise is inevitably inherent in neuronal action@23#.
Therefore, also in neuroscience it is highly questiona
whether the averaging assumption is justified. Neverthel
averaging is typically used for noise reduction of biologic
signals, such as EEG@6,14# and magnetoencephalograph
~MEG! signals@15,20#, as well as local field potentials~LFP!
@4#.

The effect of the antiphase CT response clustering off1

and f2 on the CT averaged responsesx̄1 and x̄2 is signifi-
cant. In the prestimulus region,x̄1 and x̄2 vanish because o
the randomized stimulus administration@Figs. 6~a! and 6~c!#.
The stimuli resetf1 andf2, and hence in the course of th
stimulation x̄1 and x̄2 approach a constant value@Figs. 5~a!
and 5~g! and 6~a! and 6~c!#. In case of an antiphase reset, i.
for tdel close to 0.5T, 1.5T, and 2.5T, after stimulationx̄1

and x̄2 display strongly damped oscillations. In contra
without an antiphase reset the oscillations ofx̄1 and x̄2 relax
slowly @Figs. 5~a! and 5~g!#. The strong damping of the CT
averaged responsesx̄1 and x̄2 is caused by the antiphase C
response clustering. To see this, let us focus on the situa
for tdel50.5 in more detail.

We demonstrate how the antiphase CT response cluste
of f j is connected with the antiphase CT branching ofw1,1’s
trajectories. The trajectories ofw1,1 form an upper and a
lower branch@denoted byu and l in Fig. 4~g!#. The two
branches are in antiphase position at timet051.0, whens1,1

(1)

is locally minimal, whereass1,1
(2) as well asd1,1 are locally

maximal. Let us average selectively over those responsexj
that belong to the two different branches. We denote the

FIG. 6. Time course of the CT averaged responsesx̄1 ~a! andx̄2

~c! from Eq. ~21! belonging to the simulation from Fig. 4~and Fig.
5 for tdel5T/2). According to Eq.~23! selectively averaged CT

responsesx̄ j
a @~b! and~d!, thick line# and x̄ j

b @~b! and~d!, thin line#
are computed for the trajectories ofw1,1 running through the uppe
and the lower branches of Fig. 4~g!, respectively.
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averaged signals of those trials wherew1,1 runs through the
upper and the lower branch byx̄ j

a and x̄ j
b , respectively:

x̄ j
a~ t !5

1

l (
kPU

xj~tk1t !, x̄ j
b~ t !5

1

l (
kPL

xj~tk1t !,

~23!

where U and L denote the subsets of trials for whic
w1,1(t01tk) is in the upper and lower branches:w1,1(t0
1tk)<0.5 for kPU and w1,1(t01tk).0.5 for kPL. ~Be-
cause of the graphics program used, in Fig. 4~g! the y axis
runs downwards, so that the values ofw1,1 in the upper
branch are smaller than those in the lower branch.!

At the end of the stimulation,x̄ j
a and x̄ j

b are in phase, but
within only four poststimulus cycles the phase relations
betweenx̄ j

a and x̄ j
b turns from in phase into antiphase@Figs.

6~b! and 6~d!#. According to Eq.~23!, x̄ j
a and x̄ j

b are normal-

ized by a factor of 1/l , so thatx̄ j
a(t)1 x̄ j

b(t)5 x̄ j (t) for all
timest. As a further consequence of this normalization, if t
majority of trajectories ofw1,1 run through only one of the
branches, the corresponding CT averaged signal is la
whereas the other one is small. This is what we observ
our case: 67% of the trajectories ofw1,1 run through the
upper branch, and only 33% run through the lower bran
Therefore,x̄ j

a has a larger amplitude compared to that ofx̄ j
b .

Hence, whenx̄ j
a andx̄ j

b are in antiphase relation, they do n

cancel each other out, butx̄ j
a dominatesx̄ j , so that a low-

amplitude oscillation persists.
A phenomenological interpretation ofx̄ j ’s dynamics in the

spirit of the evoked response literature@6,14# would be as
follows: Before stimulation the oscillators are not acti
~Fig. 6!, the stimulus activates them, and their respon
quickly decays to a low-amplitude oscillation~for tdel close
to 0.5T, 1.5T, 2.5T, etc.! or their response persists during
long epoch and relaxes only slowly~else! @Figs. 5~a! and
5~g!#. But according to Eq.~1!, the oscillators are perma
nently active with constant amplitude, irrespective oftdel.

In summary, with CT averaging as defined by Eq.~21!, it
is impossible to distinguish between a mean amplitude
crease, of the single responses and a CT response
correlation which is, e.g., due to an antiphase CT respo
clustering. Consequently, the CT averaging may lead to
vere artifacts.

B. Cross-trial standard deviation

To estimate whether the poststimulus signals of the os
lators are stereotypical, we determine the standard devia
across trials at each timet relative to stimulus onset with the
cross-trial standard deviationof the j th oscillator defined by

% j~ t !5A 1

l 21 (
k51

l

@xj~tk1t !2 x̄ j~ t !#2, ~24!

with the CT averaged signalx̄ j from Eq. ~21!, and xj (t)
5cos@2pfj(t)# according to Eqs.~3! and ~4! . We would
2-8
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expect% j (t) to be small when the signalsxj (tk1t) are per-
fectly stimulus locked at timet, and large when there is n
stimulus locking.

To demonstrate important features of the CT standard
viation ~and of another CT analysis below! we introduce
noise-free, idealized responses. The latter are not gene
by the model given by Eq.~1!, but are simply defined in
order to serve as test data. Consider an ensemble o
sponses of both oscillators defined by

f1~ t1tk!5@ t1«j1,k# mod 1, ~25!

f2~ t1tk!5@ t1Df1«j2,k# mod 1, ~26!

for k51, . . . ,l , whereDf is the constant mean phase d
ference between the responses of the two oscillators,
$j j ,k%k51

l is constant and normally distributed with varian
1 for j 51,2. We modify the variance of the normal distrib
tions of the responses by varying«. Both synthetic oscilla-
tors have an identical frequency and a periodT51. Note, for
each oscillator the CT standard deviation of the pha
f j (t1tk) of all responsesk51, . . . ,l is constant in time.
Furthermore, the phase differencew1,1(t1tk) of all re-
sponsesk51, . . . ,l is constant in timet. Hence, quantities
measuring the extent of the stimulus locking of the respon
of each single oscillator as well as their interdepende
have to be constant, too.

This requirement, however, is violated by the CT stand
deviation% j defined by Eq.~24! @Fig. 7~a!#. Only for nearly
vanishing variance of the responses, i.e., for« close to 0,% j
is ~nearly! constant in time, whereas for larger values of«,
we observe an ‘‘artificial’’ oscillation of% j with a period of
T/2, whereT is the period of the synthetic oscillators. Th
oscillation occurs for all values ofDf from Eq. ~26!.

Accordingly, when we calculate% j for the simulated data
from Fig. 4, we also observe an artificial oscillation@Fig.
7~c!#: Directly after the stimulation% j is close to zero,
which, of course, makes sense, since it reflects the reset
the poststimulus increase of% j is modulated by the artificia
oscillation already observed in the synthetic data@Fig. 7~a!#.

In summary, the CT standard deviation from Eq.~24! can-
not be considered as a reliable measure for stimulus loc
of the responses of a single oscillator, since it produces
ficial oscillations that are not related to stimulus locked d
namics.

C. Cross-trial cross correlation

Let us recall what happens if we detect linear correlatio
between the two oscillators across trials by applying
cross correlation across trials to the signals of the oscilla
at each timet relative to stimulus onset@16,17#:

C~ t !5

(
k51

l

x1~ t1tk!x2~ t1tk!

AF (
k51

l

x1
2~ t1tk!GF (

k51

l

x2
2~ t1tk!G

~27!
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is thecross-trial cross correlationbetweenx1 andx2 at time
t, which ~to avoid a singularity! by definition is set to zero if
all responses ofx1 or x2 vanish at timet. C is normalized:
21<C(t)<1 for all times t. C(t)51 or 21 if x1(t1tk)
5 cx2(t1tk) with constant c.0 or ,0 for all k
51, . . . ,l .

The CT cross correlation of the synthetic stimulus-lock
responses from Eqs.~25! and ~26! artificially oscillates with
increasing timet, i.e., with increasing phasesf j although the
phase differencewn,m remains constant@Fig. 7~b!#. These
oscillations occur for all values of the phase differenceDf
@16,17#.

Correspondingly, artificial oscillations are also observ
when the CT cross correlation is applied to the simula
data from Fig. 4. Prior to stimulation the oscillators are sy
chronized with phases that are not stimulus locked due to
randomized stimulus administration according to Eq.~6!. C
is nearly constantly close to 1@Fig. 7~d!#. The stimulus
causes an antiphase reset, so thatC is set close to21. While
the stimulus-locked poststimulus responses resynchronizC
oscillates with twice the oscillators’ eigenfrequency@as in
Fig. 7~b!#. Correspondingly, the CT cross correlation defin
by Eq. ~27! is not an appropriate measure for stimulu
locked synchronization and desynchronization.

Also, a modification of Eq.~27! performed to avoid sin-

FIG. 7. The CT standard deviation%1 from Eq.~24! ~a! and CT
cross-correlationC from Eq. ~27! ~b! for synthetic antiphase re
sponses defined by Eqs.~25! and ~26!, f1(t1tk)5@ t
1«j1,k#mod1 andf2(t1tk)5@ t1Df1«j2,k# with Df50.5 (k
51, . . . ,l ). The time interval@0,1# equals one period of the syn
thetic responses.$j j ,k%k51

l is constant in time and normally distrib
uted with unit variance forj 51,2. The variance of the responses
modified by varying«: «50.01 ~solid line!, «50.4 ~dashed line!,
and «51 ~dotted line!, so that the overall variance of«$j j ,k%k51

l

reads 0.0001~solid line!, 0.16~dashed line!, and 1~dotted line!. For
«50, C always equals21, except for the times when the signa
xj5cos(2pfj) vanish. A constant scattering of the phases («.0)
makesC smoother, so that oscillations with twice the oscillato
frequency occur—although the phase differencewn,m of all pairs of
responses is constant.%2 is very similar to%1. ~c! and~d! %1 andC
are computed for the signals from Fig. 4~same format as in Fig. 4!.
Again, %2 is very similar to%1.
2-9
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gular behavior in case all responses ofx1 or x2 vanish at time
t does not help to get rid of the oscillatory artifacts: Across-
trial sign cross correlation was introduced by G(t)
5 l 21(k51

l sgn@x1(t1tk)x2(t1tk)#, where sgn(a)521, 0
or 1 if a,0,50 or .0 @16,17#. Although different by defi-
nition, the CT cross correlation from Eq.~27! and the CT
sign cross correlationG(t) are very similar, at least whe
applied to signals stemming from phase oscillators. They
not only depend on the phase differencewn,m , but inevitably
also on the oscillators’ absolute phasesf j . Thus, both mea-
sures lead to severe artifacts.

VIII. STOCHASTIC RESONANCE OF CT
RESPONSE CLUSTERING

In Sec. IV we already discussed the dynamics of the ph
differencew1,1 in the absence of noise (D50). Depending
on whether the stimulus places the particle~i.e., w1,1) to the
right or to the left of the maximum of the potentialV from
Eq. ~18! located inw1,1

max, the particle moves into the right o
left minimum of V ~Fig. 3!. For w1,15w1,1

max a minimal per-
turbation ~even numerical noise! is sufficient to makew1,1
relax to one of the minima ofV. This is the case, e.g., fo
nondetuned oscillators (g50) subject to a perfect antiphas
reset~Fig. 3, thick line!. The situation is different if an an
tiphase reset is performed in detuned oscillators (gÞ0, Fig.
3, thin line!. Since for positiveg an antiphase reset place
w1,1 to the right ofw1,1

max, the particle will always reach the
right minimum of V, and there will be no CT branching o
the trajectories ofw1,1,.

To study the influence of the noise amplitude on the
tent of symmetric antiphase response clustering in detu
oscillators, we use theindex of maximal poststimulus an
tiphase CT clusteringof the j th oscillator

a j
max5max$a j~ t !;tP#tE,tb] % ~28!

with a j from Eq. ~10!. tE denotes the end of the stimulatio
i.e., the offset of the second stimulus~see Fig. 1!. Further-
more, to distinguish between the effects of noise during
after stimulation, we determine the fraction of trials with
<w1,1,0.5 at timet with

r ~ t !5
@number of trials with 0<w1,1~ t1tk!,0.5#

~ total number of trials!
,

~29!

where the total number of trials equalsl. Note, according to
Eq. ~5! w1,1 is a cyclic variable fulfilling 0<w1,1<1 at all
times t. r (t) is evaluated at two different times: at timetE
and at timetmax, the time at which the maximal CT branch
ing of w1,1’s trajectories occurs. In other words,tmax is the
poststimulus time whens1,1

(1) from Eq.~9! is minimal. Analo-
gously, we could also definetmax as the poststimulus time
when d1,1 from Eq. ~11! is maximal ~see Sec. V!. More or
fewer trajectories run through the upper branch than thro
the lower branch in Fig. 4~g! ~where 0<w1,1,0.5), provided
r (tmax).0.5 or r (tmax),0.5, respectively.
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We turn to the oscillators shown in Fig. 4. Their detuni
g equals 0.04, and the delay between the first and sec
stimulus obeystdel50.5T. Model equation~1! is now inte-
grated numerically with noise amplitudeD varying between
0 and 1 ~Fig. 8!. For D50 the CT averaged responsex̄ j
relaxes only very slowly@Fig. 8~a!#, and no CT response
clustering occurs@Fig. 8~b!#. With increasingD we observe a
much quicker relaxation ofx̄ j @Fig. 8~a!#, and the antiphase
response clustering is reflected by an epoch with posi
antiphase CT clustering indexa j , which is particularly
strong for values ofD, around 0.2@Fig. 8~b!#.

Stochastic resonance of symmetric cross-trial antiph
response clustering is demonstrated by plotting the inde
maximal poststimulus antiphase CT clusteringa j

max from Eq.
~28! over D @Fig. 8~e!#. Without noise, there is no respons
clustering. For intermediate values of the noise amplitudeD
around 0.2! the response clustering is the strongest, wher
with further increase inD the extent of response clusterin
decreases again. A noise dependence of this kind is a
mark of stochastic resonance@26#.

r (t), i.e., the fraction of trials with 0<w1,1,0.5 at timet
defined by Eq.~29!, enables us to distinguish between t

FIG. 8. For the model studied in Fig. 4 the noise amplitudeD is
varied between 0 and 1. The number of stimuli readsl 5400,
whereas all other parameters are as in Fig. 4. The time course

the CT averaged signalx̄1 ~a! from Eq. ~21! and of the locking
indicesa1 ~b!, s1,1

(1) ~c!, andd1,1 ~d!, from Eqs.~10!, ~9!, and~11!
are displayed. Stochastic resonance is shown witha1

max ~e! from Eq.
~28!. The ratiosr (tE) ~thin line! and r (tmax) ~thick line! from Eq.
~29! are plotted in~f!, wheretE is the end of the stimulation, i.e., th
offset of the second stimulus, andtmax is the time at which the CT
response clustering~and thusd1,1) is maximal, i.e., the poststimulus

time whens1,1
(1) is minimal. x̄2 , a2, anda2

max are similar tox̄1 , a1,
anda1

max, respectively.
2-10
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effect of noise during stimulation and the effect after stim
lation. Without noise, the stimulus always places the part
to the left of 0.5:r (tE)51 @Fig. 8~f!#. Moreover, without
noise, the particle always relaxes into the left minimum ofV:
r (tmax)51. Thus, the stimulus always places the particle e
to the left of the maximum of the potentialV, which for the
detuned oscillators (g50.04) is slightly shifted to the left:
w1,1

max50.4980 ~compare Fig. 3!. The stimulation does no
cause a perfect antiphase reset withw1,1(tE)50.5, but a reset
with a tendency towards values ofw1,1(tE),0.5, because
both oscillators are coupled. During the period of time wh
only oscillator 2 is stimulated, i.e., between the offset of
first stimulus and the offset of the second stimulus~Fig. 1!,
oscillator 1 adapts its phase to the phase of the stimul
oscillator 2.

In the presence of noise, the CT response clustering
curs because of two effects of the random forces.

Effect of noise in the course of the stimulation.Without
noise the same stimulus applied to the oscillators in the s
dynamical state always moves the particle to the same p
in potentialV. In contrast, as a consequence of the rand
forces the trajectory ofw1,1, is no longer predictable. Apply
ing the same stimulus to the same dynamical state sev
times, leads to a noise-induced scattering ofw1,1(tE). Hence,
r (tE) decreases with increasing noise@Fig. 8~f!#.

Effect of noise after the stimulation.As already discussed
in Sec. IV, for sufficiently large noise amplitude the partic
may relax into the right potential well, although it started le
from w1,1

max and vice versa. Accordingly, with increasingD the
fraction r (tmax) decreases even quicker compared tor (tE)
@Fig. 8~f!#.

However, with further increasing noise the CT respon
clustering finally fades away, so that the strongest CT
sponse clustering is observed for intermediate noise am
tude @Fig. 8~e!#.

IX. COUPLING-MEDIATED RESONANCE OF CT
RESPONSE CLUSTERING

This section is devoted to the role of the couplings.
one hand, without coupling (K50) the potentialV from Eq.
~18! ~Fig. 3! is simply a line with a zero slope~for vanishing
detuningg) or a nonzero slope~for gÞ0). Hence, without
coupling no CT branching ofw1,1’s trajectories can occur. On
the other hand, in the preceding section we have seen,
when the coupling strengthK is much greater than the nois
amplitude, an antiphase reset can no longer be achieve
delivering two stimuli with a delay oftdel50.5.

Again, we consider the oscillators shown in Fig. 4. Th
detuningg equals 0.04, and the delay between the first a
second stimulus readstdel50.5T. Model equation~1! is now
solved numerically with noise amplitudeD50.04 and cou-
pling strengthK varying between 0 and 4~Fig. 9!. For K

50, the CT averaged responsex̄ j relaxes only very slowly
@Fig. 9~a!#, and no CT response clustering is observed@Fig.
9~b!#. With increasingK we observe a much quicker relax
ation of x̄ j @Fig. 9~a!#, and a transient epoch with stron
antiphase CT response clustering occurs@Fig. 9~b!#. The CT
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response clustering as assessed witha1
max from Eq. ~28!

equals zero forK50 and is negative forK.2 ~tested forK
up to 20). In between,a1

max is maximal aroundK50.5,
where it reaches values around 0.7. Accordingly, we obse
a distinct resonance behavior.

A similar resonance behavior is observed for a range
values of the noise amplitude. Using, e.g., the fixed no
amplitude D50.2, a value related to maximal stochas
resonance~Fig. 8!, the range of coupling-mediated resonan
increases towards larger values of the coupling strength
that a1

max falls below zero only forK.3.5.
The fraction r (t) of trials with 0<w1,1,0.5 at time t

defined by Eq.~29! tells us more about the interplay of cou
pling and noise. As in the preceding section,r is evaluated at
the end of the stimulation~at t5tE) and when the CT
branching ofw1,1’s trajectories is maximal~at t5tmax), i.e.,
when the poststimulusn:m stimulus locking indexs1,1

(1) from
Eq. ~9! is minimal @Fig. 9~c!#. Alternatively, we could also
identify t5tmax by detecting the maximum of the poststim
lus antiphase CT clustering index of then:m phase difference
d1,1 from Eq. ~11! @Fig. 9~d!#.

With increasingK, more and more trajectories ofw1,1 are
captured in the interval@0,0.5@ at the end of the stimulation

FIG. 9. For the model studied in Fig. 4 the coupling strengthK
is varied between 0 and 4. The noise amplitude readsD50.04,
whereas all other parameters are as in Fig. 4. The time course

the CT averaged signalx̄1 ~a! from Eq. ~21! and of the locking
indicesa1 ~b!, s1,1

(1) ~c!, andd1,1 ~d!, from Eqs.~10!, ~9!, and~11!
are plotted. Coupling-mediated resonance is demonstrated
a1

max ~e! from Eq.~28!. The ratiosr (tE) ~thin line! andr (tmax) ~thick
line! from Eq. ~29! are plotted in~f!, where tE is the end of the
stimulation, i.e., the offset of the second pulse, andtmax is the time

at which the CT response clustering is maximal.x̄2 , a2, anda2
max

are similar tox̄1 , a1, anda1
max, respectively.
2-11
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PETER A. TASS PHYSICAL REVIEW E67, 051902 ~2003!
at timetE @Fig. 9~f!#. During the poststimulus transient, nois
counteracts this effect by makingw1,1 diffuse in double-well
potentialV from Eq.~18!. Therefore,r (tmax),r(tE) for inter-
mediate coupling strength~Fig. 3!. Note, due to the detuning
g50.04, the potential has a small negative mean slo
which facilitates the escape ofw1,1 into the right potential
well. However, during the period of time when only oscill
tor 2 is stimulated~between the offset of the first and th
offset of the second stimulus!, oscillator 1 follows oscillator
2 the quicker the largerK. Correspondingly, with increasin
K finally practically all trajectories are captured in the le
potential well, so thatr (tE) gets close to 1@Fig. 9~f!#. Fur-
thermore, with increase in coupling strengthK, the wells of
potentialV get deeper and deeper, so that finally~for fixed
noise amplitude! the escape rate ofw1,1 tends to zero. Ac-
cordingly, alsor (tmax) approaches 1@Fig. 9~f!#. For values of
K greater than~approximately! 2, w1,1 is captured in the left
potential well and cannot escape. Therefore, the CT resp
clustering vanishes, anda1

max tends to zero.

X. DISCUSSION

In this paper, I have introduced a model that makes
possible to study transient stimulus-locked phase dynam
synchronization, and desynchronization of two coup
phase oscillators, which are stimulated at different tim
Moreover, appropriate data analysis tools have been
sented which enable to detect these transient dynamical
cesses in simulated as well as experimental data~Sec. III!.

These different data analysis tools have been compare
standard data analysis techniques applied in a cross
manner~Sec. VII!. CT cross correlation from Eq.~27! and
CT standard deviation from Eq.~24! inevitably lead to severe
artifacts, because they cause artificial oscillations that are
related to any real feature of the transient processes u
consideration~Fig. 7!. CT averaging from Eq.~21!, the gold
standard in evoked response studies@6,14,15#, may lead to
massive misinterpretations since it cannot distinguish
tween transient response clustering and an overall decr
of the amplitude of the single responses~Fig. 6!. In particu-
lar, the switching between qualitatively different respons
driven by intrinsic noise, escapes detection when the s
dard analysis tools are applied.

Two types of indices for analyzing stimulus-locked d
namics have been proposed and compared to each other
sort of indices detects specific features of the CT distri
tions, e.g., one peak or two antiphase peaks@Eqs.~8!–~11!#:
l j

(n) andsn,m
(n) correspond to the modulus of thenth Fourier

mode of the CT distributions from Eq.~7!. In contrast, the
other sort of indices is based on the Shannon entropy,
analyzes the CT distributions from Eq.~7! in a more genera
way by comparing them with a uniform distribution@Eqs.
~12! and ~13!#.

It turns out, that the indices based on the Shannon entr
are not sensitive enough to detect the switching betw
qualitatively different responses~Sec. VI!. In this respect, the
Shannon entropy based indices are comparable to the
averaged signalx̄ j from Eq.~21! and the indices based on th
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first Fourier mode,l j
(1) and sn,m

(1) : They only capture a
simple reset, but not the switching dynamics, i.e., the
tiphase CT response clustering and the antiphase CT bra
ing of the trajectories ofw1,1 ~Fig. 5, Sec. VI!. A quantity
comparable tol j

(1) , based on a wavelet transformation a
denoted as ‘‘phase-locking factor,’’ has been used to st
phase resetting in EEG signals obtained from sensory sti
lation experiments@29,22#. Our results clearly show that it is
not sufficient to exclusively computel j

(1) ~Fig. 5, Sec. VI!.
Rather it is crucial to use higher-order indices,l j

(n) andsn,m
(n)

with n.1 @Eqs.~8! and~9!#, and related quantities@Eqs.~10!
and ~11!#, in order to cope with complex responses.

Response decorrelation due to transient CT antiphase
sponse clustering is robust with respect to modifications
model equation~1! and variations of its parameters.

~i! The transient dynamical phenomena studied here
not restricted to the stimuli defined by Eq.~20!. In general,
stimuli of first order~i.e., stimuli containing terms such a
coscj and sincj) may take the form

S1~c1!5I cos~c11u1!, S2~c2!5I cos~c21u2!
~30!

with constant phase shiftsu1 and u2. In this case an an-
tiphase reset is achieved and, thus, a CT response clust
occurs for

tdel5S u22u1

2p
10.51kDT, ~31!

wherek is a small integer. For example, foru150 andu2
5p we observe a CT response clustering fortdel50, T, 2T,
3T, etc., with T52p/v. Of course, also for the stimul
given by Eq.~30! the coupling strength must not be too larg
with respect to the noise amplitude. Otherwise, a CT
sponse clustering cannot occur as explained in Sec. IX.
fects of stimuli of higher order will be presented in a fort
coming study.

~ii ! The CT response clustering is not limited to in-pha
coupling. This can easily be shown by applying the transf
mation c j→c j1cj with constantcj . Effects caused by
higher-order coupling terms, such as sin(2cj) or cos(2cj),
will also be the subject of a forthcoming paper.

~iii ! The CT response clustering also occurs in case
asymmetric stimulation intensities. What matters is tha
stimulus is able to reset its oscillator during delivery. F
this, its intensity has to be large enough compared to c
pling strength and noise amplitude. Using weak stimuli,
have to be aware of the fact that in such a case the impa
stimulation typically depends on the initial phase@5#. To
cope with this, we may extend the data analysis from Sec
by performing it selectively for different ranges of the initi
phases.

~iv! The duration of both stimuli does not need to
identical~cf. Fig. 1!. For stimuli of different lengths the rel
evant parametertdel from Eq.~31! is the pause between the
offsets, and not the pause between their onsets.

~v! An important aspect is the directionality of the co
plings. In the present model, the coupling is symmetric
2-12
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cording to Eq.~1!. Modifying model equation~1! by includ-
ing asymmetric couplingK j yields

ċ j5v j2K j sin~c j2ck!1Xj~ t !Sj~c j !1F j~ t !, ~32!

wherej ,k51,2 andj Þk. A weak asymmetry of the coupling
has no dramatic impact on the CT response clustering. H
ever, a strong asymmetry of the couplings is relevant,
cause, e.g., during the period of time when only oscillato
is stimulated~between the offset of the first stimulus and t
offset of the second stimulus, see Fig. 1! oscillator 1 follows
oscillator 2, the quicker the stronger oscillator 1 is coupled
oscillator 2. Asymmetries of the coupling can be revealed
asymmetries of the timing of the stimuli: Depending
whether oscillator 1 or oscillator 2 is stimulated first, t
responses are qualitatively different. This effect can even
used to detect the coupling direction and will be the sub
of a forthcoming communication.

Let us compare the simultaneous stimulation (tdel50) us-
ing antiphase stimuli from Eq.~19! with the stimulation us-
ing identical stimuli from Eq.~20! with a delay of half a
mean periodT (tdel50.5T). Comparing the results from Se
VIII with a previous study on the simultaneous stimulati
@17#, it turns out that in both cases a stochastic resona
occurs in a similar way. However, the two types of stimu
tion differ significantly concerning the effects of varyin
coupling strength~compare Fig. 9 with Fig. 5 in Ref.@17#!.
In case of the simultaneous stimulation with antipha
stimuli for vanishing coupling (K50) the amplitude ofx̄ j

from Eq. ~21! slowly relaxes, andx̄ j runs through severa
cycles. Sufficiently strong couplingK.0 gives rise to a
strong CT antiphase response clustering, which is relate
strongly damped oscillatory CT averaged signalsx̄ j . For
strong enough couplingK the antiphase response clusteri
occurs so rapidly, such that the CT averaged signalsxj even
vanish ~Fig. 5 in Ref. @17#!. With increasing coupling
strength the extent of CT response clustering continuou
increases. In contrast, in the case of the stimulation w
identical stimuli delivered with a delay oftdel50.5T, the CT
response clustering vanishes when the coupling strength
too large~Fig. 9!. Strong enough coupling prevents from a
antiphase reset and, thus, from a stochastic switching
tween different responses~Sec. IX!, so that a coupling-
mediated resonance occurs.

A further important difference between the simultaneo
stimulation (tdel50) and the time delayed stimulation (tdel
50.5T) is that the former typically causes the symmetric C
response clustering@16,17#, whereas the latter is typically
associated with the asymmetric CT response clustering~Fig.
6!. The asymmetry is due to the influence of the couplin
during periods of asymmetric stimulation, i.e., stimulation
only one of the oscillators~Secs. VII A and IX!.

To study transient stimulus-locked dynamics in a clus
of many coupled oscillators, we can generalize the d
analysis presented in Sec. III in the following way. For illu
tration, let us consider a cluster ofN oscillators given by
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j 851

N

K j j 8 sin~c j2c j 8!1Xj~ t !Sj~c j !1F j~ t !,

~33!

where, similar to Eq.~1!, v j is the eigenfrequency of thej th
oscillator,K j j 8 is the coupling constant between thej th and
the j 8th oscillator, andSj (c j ) models the stimulus acting o
the j th oscillator. The timing of the stimuli is given byXj .
Similar to Fig. 1, we assume that the delays between
pulses affecting the different oscillators are constant acr
trials, respectively. The random forcesF j are the Gaussian
white noise, where ^F j (t)&50 and ^F j (t) F j 8( t̃ )&
5Dd j j 8d(t2 t̃ ) with constant noise amplitudeD. We can
study a stimulus-locked transient dynamics in different wa

~i! Univariate analysis with the indices from Eqs.~8! and
~10!: We may determinel j

(n) from Eq. ~8! anda j from Eq.
~10! for each individual oscillator (j 51, . . . ,N). On the
other hand, it may be advantageous to study transient
namics on a more macroscopic, collective level of desc
tion, especially in order to estimate the impact of stimulati
on synchronization processes. For this, we introduce
cluster variables

Zk~ t !5Rk~ t !eiQk(t)5
1

N (
j 851

N

eikc j 8(t), ~34!

whereRk(t) andQk(t) are the corresponding real amplitud
and real phase, where 0<Rk(t)<1 for all timest @5,18,25#.
Cluster variables are convenient for characterizing synch
nized states of different type: Perfect in-phase synchron
tion corresponds toR151, whereas an incoherent state, wi
uniformly distributed phases, is associated withRk50 (k
51,2,3, . . . ). R150 combined with largeRk is indicative of
a k-cluster state consisting ofk distinct and equally space
clusters, where within each cluster all oscillators have sim
phase. Note, in the sums in Eqs.~33! and ~34! the index j 8
runs over allN oscillators.

Similar to Eq. ~8! we determine the time-depende
stimulus-locking indicesof Qk by

lk
(n)~ t !5U1l (

j 851

l

exp@ inQk~t j 81t !#U . ~35!

Let us assume that before stimulation the cluster is in-ph
synchronized and acts like one giant oscillator (R1.0). By
determiningl1

(1) , we can determine whether a stimulus r
sets the cluster. In this case, the stimulus causes a tran
increase ofl1

(1) @see Fig. 4~b!#. Whether the extent of syn
chronization within the cluster increases or decreases du
this reset can be assessed by evaluating the cross-trial
age ofR1 from Eq. ~34! defined by

R̄1~ t !5
1

l (
j 851

l

R1~t j 81t ! ~36!

@see Eq.~21!#: A stimulus-locked increase or decrease of t
synchronization of the cluster as a whole corresponds t
stimulus-locked increase or decrease ofR̄1. In general,
2-13
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stimulus-locked transients of ak-cluster state can be studie

by means oflk
(n) and the CT averageR̄k . Note, in the sums

in Eqs.~35! and ~36! the indexj 8 runs over alll trials.
~ii ! Bivariate analysis with the indices from Eqs.~9! and

~11!: We may apply the data analysis method from Sec. III
all possible pairs (j , j 8) of oscillators, where j , j 8
51, . . . ,N. Especially for largeN, it might be more appro-
priate to study the transient interactions on a collective le
of description as described above. Furthermore, depen
on the particular application we may study the interact
between different subpopulations or between the wh
population and a particular oscillator with the bivariate tec
nique from Sec. III. For example, for the study of the inte
action between the whole population and a particular os
lator j, similar to Eq.~9!, we would introduce then:m phase
difference between thej th oscillator and thekth cluster vari-
able according to@nc j (t)2mQk(t)#/(2p) mod 1 @see Eq.
~5!#. For thisn:m phase difference we would then calcula
the n:m stimulus-locking indices defined by Eq.~9!. In this
way, it is possible to detect a stimulus-locked increase
decrease of the synchronization between thej th oscillator
and thekth cluster variable.

The data analysis presented in Sec. III can be applie
experimental data. For discrete signals such as timing
quences of spiking neurons the phase can be estimated
linear interpolation. In an application to continuous expe
mental data also, the amplitudes of the oscillators have to
investigated. To this end, a relevant oscillatory signalxj (t),
e.g., a particular brain rhythm, is extracted out of a measu
signal with bandpass filtering. Instantaneous phasec j (t) and
instantaneous amplitudeAj (t) of xj (t) can be determined by

means of the Hilbert transformxj
H(t) of xj (t) according to

xj (t)1xj
H(t)5Aj (t)exp@icj(t)# @27#. The Hilbert transform is

realized with a filter causing a phase shift ofp/2 for all
frequencies. Alternatively, one can use the wavelet appro
to determine the phase@28#. The amplitudesAj of the oscil-
lators can then be averaged across trials as done in Eq.~21!
with the signals. In this way, however, qualitatively differe
transients of the amplitudes cannot be extracted. Thus
detect a CT clustering of amplitude transients, in the spiri
the stochastic phase resetting analysis~Sec. III!, similar to
Eq. ~7! we can introduce CT distributions of the amplitud
with $Aj (t1tk)%k51, . . . ,l and evaluate them in a comparab
way as defined by Eqs.~8! and ~9! for the phases. This wa
not necessary here, since the amplitude of the phase os
tors is a constant. Note, when applied to experimental d
the time resolution of the stochastic data analysis meth
from Sec. III is enormous, since it is only restricted by t
sampling rate or, more precisely, by the time resolution
the preprocessing which yields the phases~e.g., bandpass
filtering and the Hilbert transform!.

Model equation~1! may be an appropriate minimal mod
in various fields of physics. In biophysics, neuroscience,
medicine it may apply to simple neural nets consisting
only a few neurons. In this case a single oscillator wo
model a single oscillatory neuron. In addition, a single os
lator may act as a simple macroscopic model for an osc
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tory population of neurons~as discussed in Sec. VII A!.
Stimulation at different times is relevant for several reaso

~i! In the nervous system, sensory information is typica
transmitted via parallel pathways having different conduct
times@30#. In this context, model equation~1! stands for two
interconnected brain areas that generate oscillatory act
and have sensory inputs arriving at different times, com
rable, e.g., to area V1 and area V5 of the visual system.

~ii ! In a number of neurological diseases, for example
multiple sclerosis conduction times may increase sign
cantly and impair brain function.

~iii ! Varying the delaytdel and administering two qualita
tively different sensory stimuli or delivering electrica
stimuli at different sites may serve as a key approach
studying the interactions of different brain areas duri
short-term information processing.

Obviously, in a next step time delays of the couplin
terms have to be incorporated into the model, too.

CT averaging as defined by Eq.~21! cannot distinguish
between an overall amplitude decrease of the single
sponses and an antiphase CT response clustering. Utili
the typical, phenomenological reasoning applied to interp
averaged responses@6,14#, the exclusive consideration of th
averaged signalx̄ j from Eq. ~21! may give the impression
that the response of a brain area is diminished~Fig. 6!. This
typically leads to diverse speculations concerning a redu
metabolism of this particular area or an inhibition impos
by other, hyperactive areas. However, behind such a p
tively weak response, the stochastic phase resetting ana
~Sec. III! may reveal a coordinate switching between qua
tatively different, strong, and long-lasting responses.

The approach presented here may identify how respon
of a single brain area crucially depend on the interactions
this particular area with other areas. In particular, the s
chastic phase resetting analysis may enable us to detect
brain areas may switch between different, coordinated
sponses to a given stimulus. Neural populations may ad
the strength of their interactions to the amount of intrin
noise, in order to achieve an effective switching by means
stochastic resonance~Sec. VIII!.

In the spinal cord the switching between coordinated
sponses of different neural populations is a well-known p
nomenon which is essential for spinal motor control@31#.
From a biological point of view, we can expect that elega
control mechanisms which turn out to be very effective in t
spinal cord may also be used in parts of the nervous sys
that are—from the evolutionary standpoint—younger, e.g.
the neocortex. From a more pragmatic point of view we m
suspect that the assumption behind the CT averaging,
~22!, acts as a self-fulfilling prophecy: Looking for the on
stereotyped response in an inventory of responses with
using a self-consistency criterion produces artifacts, inev
bly. The data analysis methods from Sec. III are already
ing applied to MEG/EEG signals and the cerebral curr
source density.
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